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The topological analysis of chaos based on a knot-theoretic characterization of unstable periodic orbits has
proven to be a powerful method, however knot theory can only be applied to three-dimensional systems. Still,
the core principles upon which this approach is built—determinism and continuity—apply in any dimension.
We propose an alternative framework in which these principles are enforced on triangulated surfaces rather
than curves, and we show that in dimension 3 our approach numerically predicts the correct topological
entropies for periodic orbits of the horseshoe map.
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Chaotic behavior results from the interplay of two geo-
metrical processes in state space: stretching separates neigh-
boring trajectories while squeezing maintains the flow within
a bounded region �1,2�. A topological analysis has been de-
veloped to classify the ways in which stretching and squeez-
ing can organize a chaotic attractor �2–4�. It relies on a theo-
rem stating that unstable periodic orbits �UPO� of a chaotic
three-dimensional �3D� flow can be projected onto a 2D
branched manifold �a template� without modifying their knot
invariants �5�. In this method, UPO extracted from an experi-
mental time series are characterized by the simplest template
compatible with their topological invariants �2–4�.

However, this approach can only be applied to 3D attrac-
tors: in higher dimensions, all knots can be deformed into
each other. Although other topological methods are appli-
cable to higher dimensions �6,7�, extending template analysis
is still desirable because it provides a different information.
A first step to overcome the 3D limitation is to recognize that
knot theory is not a necessary ingredient but simply a con-
venient way to study how two fundamental properties, deter-
minism and continuity, constrain trajectories in phase space.
It is because two trajectories cannot intersect that the knot
type of a 3D periodic orbit is well defined and is not modi-
fied as the orbit is deformed under control parameter varia-
tion.

In this paper, we note that a dimension-independent for-
mulation of determinism is orientation preservation, and we
propose an approach in which it is enforced on a representa-
tion of the dynamics in a triangulation of periodic points. In
dimension 3, an explicit formalism is easily constructed, and
we find that it numerically predicts the correct entropies for
periodic orbits of the horsehoe map. The entropy of a peri-
odic orbit is an invariant defined as the minimal topological
entropy �8� of a flow containing this orbit �9,10�; a positive-
entropy orbit is a powerful indicator of chaos �4,11,12�. This
result suggests that a key ingredient for constructing a knot-
less template analysis has been captured, although a proof of
validity and an explicit higher-dimensional extension are still
lacking.

We now detail our approach. The first step is to replace
the requirement of nonintersecting curves by a geometrical
problem that adapts naturally to phase spaces of any dimen-
sion. It has been suggested to exploit the rigid structure of
invariant manifolds of UPO �4,13�. Here, we note that when

a volume element V of a d-dimensional phase space is ad-
vected by a deterministic flow �t, the image �t��V� of its
boundary cannot display self-intersections: at any time t, its
interior and its exterior remain distinct, as with a droplet in a
fluid flow. A technical formulation of this property is that
volume orientation is preserved by the dynamics. For sim-
plicity, we consider attractors embedded in Rn�S1 �e.g.,
forced systems�, which can be sliced into n-dimensional
Poincaré sections parametrized by ��S1. Determinism then
imposes that boundaries of n-dimensional volume elements
of Poincaré sections retain their orientation �Fig. 1�.

Template analysis must be applicable to UPO extracted
from experimental signals, and thus can only rely on the
phase-space trajectory of a period-p orbit. Thus, we represent
the dynamics in a triangulated space whose nodes are p pe-
riodic points Pi in a Poincaré section, with Pi+1=F�Pi�, F
being the return map. In this space, points Pi are 0-cells, line
segments �Pi , Pj���ij� joining two points are 1-cells, tri-
angles �Pi , Pj , Pk���ijk� are 2-cells, etc. �Fig. 2�a��. Similar
concepts have been used in �14� to analyze the static struc-
ture of an attractor, but we focus here on the dynamics. We
denote by Sm the set of collections of contiguous m-cells,
which are the analogs of m-dimensional surfaces in the origi-
nal phase space. As Poincaré sections are swept, periodic
points move in the section plane and so do the m-cells at-
tached to them �Fig. 2�b��. The dynamics induced in Sm
should reflect that of m-dimensional phase-space surfaces
under action of the chaotic flow, and in particular should be
organized by the same stretching and squeezing mechanisms.

A dynamics in the triangulated space is specified by maps
Fm :Sm→Sm acting on collections of contiguous m-cells.
Since the original return map F sends nodes to nodes but not

FIG. 1. Under the action of the flow, volume elements of
Poincaré sections and their boundaries are stretched and squeezed
but retain their orientation, as illustrated here for 2D section planes.

PHYSICAL REVIEW E 74, 035202�R� �2006�

RAPID COMMUNICATIONS

1539-3755/2006/74�3�/035202�4� ©2006 The American Physical Society035202-1

http://dx.doi.org/10.1103/PhysRevE.74.035202


facets to facets, the Fm are not restrictions of F for m�0.
However, we require them to mimic F in the following way:
they should be invertible, satisfy determinism, and result
from a continuous deformation of facets, just as F is a con-
tinuous deformation of identity. The Fm should also satisfy
�Fm���=Fm−1����, where � is the boundary operator. As we
see below, facets are not necessarily trivially advected be-
tween sections because degeneracies occur, at which action
must be taken to preserve orientation.

We now specialize to the 3D case. The volume element of
a triangulated set of periodic points in a 2D Poincaré section
is a triangle �2-cell� based on three periodic points Pi, Pj, and
Pk. Let Pi��� be the position of Pi in section �, with Pi�0�
= Pi and Pi�2��= Pi+1. The natural evolution of T
= �Pi , Pj , Pk� as � increases is

T��� = �Pi���,Pj���,Pk���� , �1�

which would lead to a trivial induced return map F2�T�
=T�2��= �Pi+1 , Pj+1 , Pk+1� if expression �1� were uniformly
valid as a 2-cell. However, it is common that at some �
=�0, one of the three points �say Pk���� passes between the
two others, thereby changing the orientation of the candidate
2-cell T��� given by expression �1� �Fig. 3�. As emphasized
above, this is strictly forbidden by determinism, and we must
thus modify the representation of the dynamics. It turns out
that this problem has a simple solution.

The degenerate triangle T��0� in Fig. 3 is like a flattened
balloon whose boundary splits into two superimposed sides
with opposing outer normals. Determinism is violated when

these two sides cross each other so that interior and exterior,
defined with respect to outer normal, seem to be exchanged.
However, the experimental data only constrain node motion,
from which the facet dynamics is interpolated. To preserve
determinism, we force the two opposing sides not to cross by
swapping them at degeneracy, thereby canceling the inver-
sion.

This prescription is illustrated in Fig. 4, where the two
opposing sides at triangle degeneracy are represented as a
solid and a dashed line. The key point is that we construct
the edge dynamics so that the left �solid line� and right
�dashed line� sides remain at the left and right, respectively.
Since the left �right� side consists of itinerary �ik�+ �kj� ��ij��
before degeneracy and of itinerary �ij� ��ik�+ �kj�� after de-
generacy, their relative position is preserved by applying the
following dynamical rule in S1=Sn−1 at triangle inversion:

�ij� → �ik� + �kj� , �2a�

�ik� + �kj� → �ij� . �2b�

These rules also apply to reverse paths �e.g., �ji�→ �jk�
+ �ki��. Note that �T=��ijk�= �ij�+ ��jk�+ �ki�� is mapped by
�2� to ��ik�+ �kj��+ �ji�=��ikj�. The permutation compensates
for triangle inversion so that orientation of �T, and hence
determinism, is preserved.

Itineraries visiting edges eij = �ij� in a given order are rep-
resented by words in a language A* over alphabet A= �elm	,
and �2� by an operator �ij

k that in each word w replaces the
letter eij by the string eikekj and eikekj by eij �hence ��ij

k �2

=1�. For example,

�ij
k eklelieijejlelieikekjeji ¯ = eklelieikekjejlelieijejkeki ¯ .

The �ij
k generate a nontrivial dynamics, as the image of an

itinerary depends on how periodic points rotate around each
other. This simple dynamics faithfully reflects that of the
flow around the periodic orbit, as we show by computing the
entropy of the orbit.

From the motion of periodic points Pi��� in the section
plane as � is swept, a list of l triangle inversions �imjm

km is
obtained, from which we build an induced return map that
transforms a word w�A* into another word w� as

F1:w → w� = N�iljl

kl
¯ �i2j2

k2 �i1j1

k1 w , �3�

where Neij¯ =e�i+1��j+1�¯. Consider periodic orbit 00111 of
a suspension of the standard horseshoe map equipped with
the usual symbolic coding �2� �Figs. 2�b� and 5�a��. We find
that as points gradually move in the section plane from their
initial location to that of their image under the return map,

FIG. 2. �a� Triangulated space based on periodic points Pi in a
3D Poincaré section. The 2-cell �ikl� is shaded. �b� The flow in-
duces a mapping of this triangulated space into itself, as suggested
here for a period-5 orbit embedded in R2�S1.

FIG. 3. As three points move in the section plane when � is
increased, the triangle they form can change its orientation.

FIG. 4. A triangle is inverted as Pk passes between Pi and Pj.
Identifying the solid �dashed� paths in the initial and end configu-
rations leads to substitution �2�.
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triangle inversions occur when point 4 successively crosses
the four edges e15, e13, e25, and e23. Thus the induced return
map for edge itineraries is F1=N�23

4 �25
4 �13

4 �15
4 . For example,

e15→
�15

4

e14e45→
¯

e14e45→
N

e25e51 = F1�e15� ,

while edges not crossed by point 4 are trivially modified

�e.g., e14→
N

e25�. This leads to the closed rule set

e14 → e25, e15 → e25e51, e25 → e35e51, e35 → e41 �4�

for edges in the invariant set of F1. Table I displays iterates
F1

m�e15� computed using �4�. Their length 
F1
m�w�
 diverges

exponentially as m→�, indicating that trajectories in the
neighborhood of the orbit are continuously stretched apart by
the flow. The growth rate

h�P� = lim
m→�

ln 
F1
m�w�

m

�5�

is obtained as the logarithm of the leading eigenvalue of the
transition matrix �Mee��, whose entries count occurrences of
edge e� or of its reverse in F1�e� given by �4�. Here,
h�00111��0.5435. Table I also shows that F1

kp�w� �p is the
orbit period� converges to an infinite word w� satisfying

F1
p�w��=w�, which is the analog of the infinitely folded un-

stable manifold of the periodic orbit.
The growth rate h�P� is expected to be the entropy hT�P�

of orbit P, defined as the minimal topological entropy �8� of
a map containing P �9�. Indeed, a piecewise linear map con-
taining P with �Mee�� as Markov transition matrix can be
constructed and has entropy h�P�, thus hT�P�	h�P�. Con-
versely, h�P�	hT�P�, as h�P� is the minimal growth rate of
the geometric length of curves passing through periodic
points Pi and cannot be larger than the topological entropy of
a map containing P, which is the supremum of stretching
rates over curves in the plane �15�.

For a typical orbit, unlike in �4�, there are paths in the
F1-invariant set that trigger a “squeezing” rule �2b�, as, for
example, e16e67→e17 for horseshoe orbit 0010111. Then
F1�e16e67��F1�e16�F1�e67� and the transition matrix cannot
be used for entropy computations, although estimates can
still be obtained by direct iteration. In all the examples we
considered, enlarging the alphabet by recoding contracting
paths as basis edges �e.g., e167�e16e67� and applying other
recodings required for consistency allowed us to rewrite F1
as an ordinary substitution like �4�. For example, the induced
return map for horseshoe orbit 0010111 can be rewritten as
�eijk�eijejk�

e14 → e25, e15 → e257e76, e17 → e257e71, e25 → e37e76,

e37 → e41, e67 → e71, e167 → e25e51, e257 → e37e761.

Besides e167, basis path e257 was introduced because its im-
age overlaps e167. A transition matrix can then be obtained,
with entropy h�0010111��0.4768.

For all 746 periodic orbits of the horseshoe map up to
period 12, we have compared growth rate �5� with topologi-
cal entropy obtained by the train-track algorithm �9,10,16�.
As illustrated in Table II, we found agreement to machine
precision in each instance. This strongly suggests that in 3D,
our approach is equivalent to the train-track approach. Quali-
tative properties of chaos are also reproduced: the dynamics
is deterministic �by construction�, invertible, and the stretch-
ing and squeezing processes are described in a symmetrical
way.

FIG. 5. �a� Periodic points of the horseshoe orbit 00111 and their
schematic trajectory in section plane. Bold lines indicate edges in-
volved in �4�. �b� Path P4P1P5P2P5P1P5P3 folds onto itself under
action of induced return map F1. The unimodal map obtained has
00111 as a periodic orbit.

TABLE I. A few iterates F1
m�e15� are given by their itinerary

between periodic points �e.g., �35152� denotes the path
e35e51e15e52�.

m Itinerary of F1
m�e15�

0 �15�
1 �251�
2 �35152�
3 �41525153�
4 �5251535152514�
5 �1535152514152515351525�
6 �2514152515351525251535152514152515351�
10 �1535152514152515351525251535152525153515¯ �
15 �1535152514152515351525251535152525153515¯ �
100 �1535152514152515351525251535152525153515¯ �

TABLE II. Topological entropies of positive-entropy horseshoe
orbits up to period 8 obtained with the approach described here and
with the train-track algorithm �TTA�.

Orbit This work TTA Orbit This work TTA

01101 1
01 0.4421 0.4421 00010 1

01 0.3822 0.3822

001011 1
01 0.3460 0.3460 000101 1

01 0.5686 0.5686

00101 1
01 0.4768 0.4768 0001 1

01 0.6329 0.6329

001010 1
01 0.4980 0.4980 000111 1

01 0.5686 0.5686

001 1
01 0.5435 0.5435 00011 1

01 0.3822 0.3822

001110 1
01 0.4980 0.4980 000010 1

01 0.4589 0.4589

00111 1
01 0.4768 0.4768 00001 1

01 0.6662 0.6662

001111 1
01 0.3460 0.3460 000011 1

01 0.4589 0.4589

001101 1
01 0.4980 0.4980 000001 1

01 0.6804 0.6804
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Remarkably, we note that while transformations �3� are
invertible, the asymptotic dynamics is singular. Consider the
itinerary w0=F3�e15�= �41525153� in Table I, which is the
shortest subpath of w� visiting the four edges in �4�. As Fig.
5�b� shows, the image F1�w0�= �5251535152514�
= �525153�+ �35152514� consists of a subpath of w0 concat-
enated with a reverse copy of w0: this path is folded onto
itself by a singular one-dimensional map. The same property
holds for all subsequent iterates Fm�e15�, hence for the infi-
nite word w�. This reflects that associated to an invertible
return map �e.g., Hénon map�, there exists an underlying
lower-dimensional noninvertible map �e.g., logistic map� de-
scribing the dynamics along the unstable manifold, a key-
stone of the Birman-Williams construction �2,5�. Note that
the symbolic name 00111 can be recovered directly from Fig.
5�b� using the usual coding for orbits of 1D maps. This
makes the new formalism promising for using topological
information to construct global symbolic codings as in �17�.
How segments along w0 are folded over each other and how
neighboring cells are squeezed provide us with a combinato-
rial description of stretching and folding that could be used
to determine the simplest template carrying the periodic orbit
studied.

To conclude, we have proposed that orientation preserva-
tion is a more general formulation of determinism than non-
intersection of trajectories. In three dimensions we find that

enforcing it on a triangulation of periodic points induces a
nontrivial dynamics on paths along periodic periodic points.
More precisely, a path map F1 is constructed by �i� following
triangles advected by the flow as one rotates around the at-
tractor, �ii� restoring orientation at each triangle inversion by
exchanging opposing sides via transformations �2�. When
paths in the F1-invariant set do not experience contraction,
entropy is obtained from a transition matrix indicating how
elementary edges in the invariant set are mapped among
themselves. Otherwise, new basis paths must be introduced
to account for contraction. A promising result is that despite
its simplicity, this formalism numerically predicts the correct
entropies for periodic orbits of the horseshoe map. Prelimi-
nary calculations also suggest that it leads to a combinatorial
description of the folding of the invariant unstable manifold
over itself, yielding information about the symbolic dynam-
ics of the orbit. It now remains to prove the validity of the
approcach in 3D and to try to extend it to higher dimensions.
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